Front end electronics for TPC

Takao

BNL

Design parameters

Figure 4.26: Schematic layout of TPC main elements.

- 146K readout channels from both ends
 - 40 measurements (clusters) in radial direction
- 15KHz is the baseline trigger rate
 - limit of DAQ rate prior to livetime fall-off
 - We assume that beam interaction may happen as much as 100KHz for |z|<1m
- $dN_{ch}/dy = 180$ (minbias Au+Au @ 200GeV) \rightarrow 400 tracks in $|\eta| < 1.1$
 - Background and fakes effectively doubles the number of tracks; 800 tracks in the TPC
- Raw rate: 940Gbits/s @ 100KHz
 - Caveat: Radially-averaged rate
 - η dependent acceptance change is taken into account

Overall scheme (Apr 1, 2017)

FEE (Frontend)

- Each FEE takes care of 256 inputs. 146K ch ~ 600 FEEs
 - Use of SAMPA chips (SAMPA is "shaper + ADC + DSP")
 - SAMPA accepts 32 inputs → 8 SAMPAs on a board (4 SAMPAs on each side)
- FPGA receives and distributes slow control and timing/clock signal
- FPGA also collects digitized data from SAMPAs (e-link) and send them out to DAM module via optical transmission
 - We don't need to use GBT protocol

We rely on SAMPA

- SAMPA = CSA + Shaper + ADC + DSP
 - 32 channels input
 - Maximum e-link output: 28Gbits/sec per chip. 11 e-link lines available
- Prototype chip is available now. Next version of SAMPA will be pre-final
 - Current SAMPA has reference voltage and some DSP issues

Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

Development status

- STAR iFEE is provided by the courtesy of Tonko Ljubicic
- Geometry of the card is 62mm*62mm
 - 64 channels/card (32 ch/SAMPA)
 - One SAMPA chip is 15*15mm²
 - SAMPA is working as expected
- Design of pre-prototype FEE board is done
 - Board consists of two SAMPAs and a SPF
 - Purpose it check interface of SAMPA and FPGA
 - FPGA is from Artix-7 evaluation board
- Connector of the pre-prototype board matches the one on the prototype padplane that Bob Azmon et al. designed
 - Signal from padplane will be an input to the pre-prototype board
 - Check cross-talk on the padplane, etc.

Placing FEE at the endcap

- From the previous pad layout, the minimum spacing of the FEE cards will be ~2cm (at r=20cm)
 - This is acceptable from the point of view of engineering
- It fits to the support structure at the endcap
 - Board width should be <14.8cm
 - Board length should be <10cm
 - Board spacing should be <2cm

Full-scale Prototype v1

Schedule

Costs review for FEE (prototype)

Total: \$60K for v1, and \$30K for pre-production

1.2.6.1	TPC FEE Prototype v1						\$57,330
1.2.6.1.3	Procure TPC FEE prototype v1 components					\$16,500	
		SAMPA chip	CERN	\$9,000	200 chips (~\$45/chip from Tonko's info)		's info) for 2
		FPGA (Artix-7)	Xilinx	\$2,500	Joe's experience (2		
		Optical transmitter/receiver	Avago	\$1,250	Joe's experience (25 boards)		
		Resistor/capacitor/regulator	Digikey	\$2,500	Joe's experience (2	5 boards)	
		Card Connectors	Samtec	\$1,250	Joe's experience (25 boards)		
1.2.6.1.4	Fabricate TPC FEE prototype v1 boards					\$7,500	
		Initial fee		\$5,000	Joe's experience		
		Board fabrication		\$2,500	Joe's experience (25 boards)		
1.2.6.1.5	Procure TPC FEE prototype v1 LV power supplies					\$5,100	
		MegaPac Chassis (5V)	Vicor West Coast	\$5,100	Steve's Quote (Jan, 2016), 1 module		
1.2.6.1.6	Develop TPC FEE Test Stand					\$26,980	
		Chain test board fabrication	BNL	\$2,000			
		Resistor/capacitor/regulator	Digikey	\$100			
		Optical transmitter/receiver	Avago	\$50			
		SAMPA chip	CERN	\$180	Two chips (with spare of 2)		
		FPGA (Artix-7)	Xilinx	\$100	Manufacturer Quote		
		Card Connectors	Samtec	\$50			
		Pulse distributor board initial fee	BNL	\$2,000			
		Pulse distributor	BNL	\$7,500	guess (25 input sele	ectors)	

Costs review for FEE (mass prod.)

Total: \$800K (with power supply and cable), including 25% spare

1.2.6.3	TPC FEE Production						\$782,600
	Procure TPC FEE						
1.2.6.3.1	components					\$603,000	
		SAMPA chip	CERN	\$378,000	4800 + 3600	chips (~\$45/c	chip)
		FPGA (Artix-7)	Xilinx	\$75,000	100 * 600 +2	25% spare	
		Optical transmitter/receiver	Avago	\$37,500	50 * 600 + 2	5% spare	
		Resistor/capacitor/regulator	Digikey	\$75,000	100 * 600 + 25% spare		
		Card Connectors	Samtec	\$37,500	50 * 600 + 25% spare		
	Procure TPC FEE LV						
1.2.6.3.2	power supplies					\$62,100	
		10AWG 6T00UP Cable	Belden	\$6,000	\$1.5/ft, 4000	4000ft.	
		MegaPac chassis (5V)	Vicor West Coast	\$56,100	5100 * 10 + 1	1 spare	
	Fabricate and assemble						
1.2.6.3.3	all TPC Fee boards					\$117,500	
		Initial fee		\$5,000			
		Board fabrication		\$75,000	100 * 600 + 3	25% spare	
		Parts mounting		\$37,500	50 * 600 + 2	5% spare	

Radiation

- Initial radiation estimate is estimated
 - Eric's analysis result of RadFET monitoring during Run-14 Au+Au
 200GeV run
 - Delivered luminosity to PHENIX was 23 nb⁻¹
- Measured result
 - 100Gy at r=3.5cm, 50Gy at r=6.5cm, 15Gy at r=16cm
 - Simple 1/r² dependence
- Total Dose at TPC (@100KHz): 10μGy/sec at 16cm
 - Highest radiation possible at TPC
- Neutron flux (1 MeV Equivalent Fluence):
 - -1.1×10^{10} n/cm² at r=16cm, 1.5×10^{10} n/cm² at 3.5cm and 6.5cm
 - ~1.0×10⁴ n/cm²/sec at 16cm (@ 100KHz)

Test stand scheme

Final words

Development of the TPC FEE is in flow

Pre-prototype will be produced soon

 Prototype v1 will also be produced in a couple of months

Support Materials

Schedules and funding news

- All the development should be finished by Jul 2018
 - Pre-prototype, prototype v1 and pre-production prototype
- Use of OPC fund is just approved
 - Enough funding for all the prototype development
 - \$90K for FEE, \$40K for DAM/EBDC

Pad side update

- New pad layout (20<r<78cm)
 - Three segments in radial direction, each divided into 16
 - 12 segments in phi direction, each divided into multiple of 16
 - Matching to number of input to a FEE
 - Each cell in the right figure corresponds to 16 pads in phi
- Variable pad size as a function of radial position
- Total 153,600 pads for both side
 - 600 FEE cards
- Data Rate (no header included)
 - 1.42Gbps/board for 30<r<40cm
 - 1.45Gbps/board for 40<r<60cm
 - 0.77Gbps/board for 60<r<80cm
 - → 28Gbps/(1/12 full azimuth)

5 FEEs for 20<r<40cm, 8 for 40<r<60cm, 12 for 60<r<78cm, for each 1/12 of full azimuth

Each cell = 16pads in phi

Alternate option? CRU ≅ DAM+EBDC

- ALICE is developing a CRU, which bases on the similar card developed by LHCb
- CRU interfaces the FEC and online computer farm
- All of slow control and timing distribution, and data transmission are realized by optical connection.
 - According to John Haggerty, this was an option for the PHENIX readout system?

Figure 6.9: Schematic of the TPC readout system with the CRU as central part interfacing the front-end electronics to the trigger system, the DCS and the online farm.

Data rate (two cases)

- Data Rate with zero-suppression
 - 1.42Gbps/board for 30<r<40cm
 - 1.45Gbps/board for 40<r<60cm
 - 0.77Gbps/board for 60<r<80cm
 - $\rightarrow 28$ Gbps/(1/12 full azimuth)
- With no zero-suppression in SAMPA (common-mode noise case)
 - 26Gbps/board (fixed)
 - No way to send this amount of data through one optical link?
 - FPGA on FEE has to do job
 - Need to take care of 11*8 e-links from 8 SAMPAs
 - Average out the charges in pads that have negative values (> 50 pads?)
 - Shift other channels by that amount
- No header is included in the estimate above
 - 40% increase (max) of the data volume for zero-suppression mode
 - Less than 1% increase for non zero-suppression mode

Costs review for FEE (prototype)

• Total: \$60K for v1, and \$30K for pre-production

1.2.6.1	TPC FEE Prototype v1						\$57,330
	Procure TPC FEE prototype					,	
1.2.6.1.3	v1 components					\$16,500	
		SAMPA chip	CERN	\$9,000	200 chips (~\$45/chip from Tonko'		's info) for 25
		FPGA (Artix-7)	Xilinx	\$2,500	Joe's experience (25 boards)		
		Optical transmitter/receiver	Avago	\$1,250	Joe's experience (25 boards)		
		Resistor/capacitor/regulator	Digikey	\$2,500	Joe's experience (25 boards)		
		Card Connectors	Samtec	\$1,250	Joe's experience (25 boards)		
	Fabricate TPC FEE prototype						
1.2.6.1.4	v1 boards					\$7,500	
		Initial fee		\$5,000	Joe's experience		
		Board fabrication		\$2,500	Joe's experience (25 boards)		
	Procure TPC FEE prototype						
1.2.6.1.5	v1 LV power supplies					\$5,100	
		MegaPac Chassis (5V)	Vicor West Coast	\$5,100	Steve's Quote (Jan, 2016), 1 module		ule
1.2.6.1.6	Develop TPC FEE Test Stand				·	\$26,980	
	·	Chain test board fabrication	BNL	\$2,000			
		Resistor/capacitor/regulator	Digikey	\$100			
		Optical transmitter/receiver	Avago	\$50			
		SAMPA chip	CERN	\$180	Two chips (with spare of 2)		
		FPGA (Artix-7)	Xilinx	\$100	Manufacturer Quote		
		Card Connectors	Samtec	\$50			
		Pulse distributor board initial fee	BNL	\$2,000			
		Pulse distributor	BNL	\$7,500	guess (25 input sele	ectors)	

Costs review for FEE (mass prod.)

Total: \$800K (with power supply and cable), including 25% spare

1.2.6.3	TPC FEE Production						\$782 <i>,</i> 600
	Procure TPC FEE						
1.2.6.3.1	components					\$603,000	
		SAMPA chip	CERN	\$378,000	4800 + 3600	chips (~\$45/c	chip)
		FPGA (Artix-7)	Xilinx	\$75,000	100 * 600 +2	25% spare	
		Optical transmitter/receiver	Avago	\$37,500	50 * 600 + 2	5% spare	
		Resistor/capacitor/regulator	Digikey	\$75,000	100 * 600 + 25% spare		
		Card Connectors	Samtec	\$37,500	50 * 600 + 25% spare		
	Procure TPC FEE LV						
1.2.6.3.2	power supplies					\$62,100	
		10AWG 6T00UP Cable	Belden	\$6,000	\$1.5/ft, 4000	Oft.	
		MegaPac chassis (5V)	Vicor West Coast	\$56,100	5100 * 10 +	1 spare	
1.2.6.3.3	Fabricate and assemble all TPC Fee boards					\$117,500	
1.2.0.5.5	dir i di de bourdo	Initial fee		\$5,000		Ψ117,500	
		Board fabrication		. ,	100 * 600 + 3	25% spare	
		Parts mounting		\$37,500	50 * 600 + 2	5% spare	

Issue on FEE development

Common mode noise issue (ALICE found)

- Common Mode removal is what the onboard DSP for the SAMPA chip is designed to do.
 - But, this is within a chip, i.e. 32 ch
- The technique:
 - Find a large number of "empty channels".
 - See if they all dip below zero together.
 - Correct everyone up by the amount of the dip.
- ALICE ended up with 5MHZ sampling instead of 10MHz in order to fit the bandwidth of GBTx
 - SAMPA itself can drain all the data

DAQ scheme: PHENIX VS sPHENIX TPC

DAQ scheme: PHENIX VS sPHENIX TPC

Data rate calculation

- Raw data (100% duty factor is assumed)
 - Sampling rate in z-direction: 10MHz (= 100nsec)
 - Pulse peaking time is 160nsec (fixed from SAMPA's specification), which leads to ~350nsec for whole pulse shape.
 - More than 4 samples in timing (z) direction is necessary. We decided on taking 5 samples including pre-signal
 - One cluster will be spread over 3 pads in r- ϕ plane
 - Coming from the characteristics of the Ne2K (Ne CF_4 iC_4H_{10} : 95% 3% 2%) gas
 - We measure 40 clusters for one track
 - Each sample is 10 bits: 40 clusters * 15 * 10 bits = 6 Kbits/track
 - 800 tracks per event: 6Kbits/track * 800 = 4.8 Mbits/event
 - This number doesn't take eta-dependent acceptance change of TPC into account
 - At 100 KHz: 4.8 Mbits/event * 100 KHz = 480 Gbits/s
- With header of SAMPA (40% increase at maximum): 670Gbits/s
 - With eta-dependent acceptance change: 940Gbits/s

A bit more differential rates

- Radius dependent occupancy and η coverage change are taken into account
- 2 Gbps/board for Minbias, 7 Gbps/board for 0-5% cent Au+Au, @ R= 30cm
 - One board = 256 channels = one optical fiber from FEE to DAM
 - C.f. GBT rate: 4.8 Gbps (line rate), 3.2 Gbps (payload rate)

On recording data at 5GB/sec

From Chris Pinkenburg

- 20 week run (12,096,000 sec)
- 5GB/sec → 60.5 PB
- 75% duty factor → 40PB
- 40PB is only a factor of 4 more than STAR took in 2014 using LTO5 tapes/tape drives, should not be a problem in 2022.
- Current LTO7 (released Dec 2015) store 4x data of LTO5 @ 2x write speed